37,754 research outputs found

    Observable Graphs

    Full text link
    An edge-colored directed graph is \emph{observable} if an agent that moves along its edges is able to determine his position in the graph after a sufficiently long observation of the edge colors. When the agent is able to determine his position only from time to time, the graph is said to be \emph{partly observable}. Observability in graphs is desirable in situations where autonomous agents are moving on a network and one wants to localize them (or the agent wants to localize himself) with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to observable discrete event systems and to local automata. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. From this it follows that it may be necessary for an agent to pass through the same node several times before he is finally able to determine his position in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.Comment: 15 pages, 8 figure

    On the Finiteness Property for Rational Matrices

    Get PDF
    We analyze the periodicity of optimal long products of matrices. A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product. It was conjectured a decade ago that all finite sets of real matrices have the finiteness property. This conjecture, known as the ``finiteness conjecture", is now known to be false but no explicit counterexample to the conjecture is available and in particular it is unclear if a counterexample is possible whose matrices have rational or binary entries. In this paper, we prove that finite sets of nonnegative rational matrices have the finiteness property if and only if \emph{pairs} of \emph{binary} matrices do. We also show that all {pairs} of 2×22 \times 2 binary matrices have the finiteness property. These results have direct implications for the stability problem for sets of matrices. Stability is algorithmically decidable for sets of matrices that have the finiteness property and so it follows from our results that if all pairs of binary matrices have the finiteness property then stability is decidable for sets of nonnegative rational matrices. This would be in sharp contrast with the fact that the related problem of boundedness is known to be undecidable for sets of nonnegative rational matrices.Comment: 12 pages, 1 figur

    On the Identification of Symmetric Quadrature Rules for Finite Element Methods

    Get PDF
    In this paper we describe a methodology for the identification of symmetric quadrature rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The methodology is free from manual intervention and is capable of identifying an ensemble of rules with a given strength and a given number of points. We also present polyquad which is an implementation of our methodology. Using polyquad we proceed to derive a complete set of symmetric rules on the aforementioned domains. All rules possess purely positive weights and have all points inside the domain. Many of the rules appear to be new, and an improvement over those tabulated in the literature.Comment: 17 pages, 6 figures, 1 tabl

    Observations and a model of gravity-wave variability in the middle atmosphere

    Get PDF
    A major goal was to determine what portion of the gravity-wave frequency spectrum accounted for the majority of the momentum flux and divergence, as this has important implications for the middle atmosphere response. It was found that approx. 70% of the total flux and divergence was due to wave motions with observed periods less than 1 hour, consistent with expectations based on the shape of the observed gravity-wave spectrum (FrItts, 1984). This dominance of the momentum flux and divergence by high-frequency motions implies a potential for the modulation of those quantities by large-amplitude motions at lower frequencies. A second, striking aspect of the velocity and momentum flux data is its dramatic diurnal variability, particularly at certain levels. This variability is illustrated with the momentum flux, computed in 8-hr blocks. The dominant contributions here are due to waves with periods less than 1 hr. The variability with height and size of the mean square velocity in the west beam and the momentum flux, energed over the 3-day period. A detailed analysis of the various tidal motions present during this data interval was performed, and it was determined that variations in the zontal wind profile imposed by the diurnal tidal motion are probably responsible for the modulation of the gravity-wave amplitudes and momentum fluxes

    Flow Motifs Reveal Limitations of the Static Framework to Represent Human interactions

    Full text link
    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies suggest that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site (and of a sexual network), the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices con- taining only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices

    On the complexity of computing the capacity of codes that avoid forbidden difference patterns

    Full text link
    We consider questions related to the computation of the capacity of codes that avoid forbidden difference patterns. The maximal number of nn-bit sequences whose pairwise differences do not contain some given forbidden difference patterns increases exponentially with nn. The exponent is the capacity of the forbidden patterns, which is given by the logarithm of the joint spectral radius of a set of matrices constructed from the forbidden difference patterns. We provide a new family of bounds that allows for the approximation, in exponential time, of the capacity with arbitrary high degree of accuracy. We also provide a polynomial time algorithm for the problem of determining if the capacity of a set is positive, but we prove that the same problem becomes NP-hard when the sets of forbidden patterns are defined over an extended set of symbols. Finally, we prove the existence of extremal norms for the sets of matrices arising in the capacity computation. This result makes it possible to apply a specific (even though non polynomial) approximation algorithm. We illustrate this fact by computing exactly the capacity of codes that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor

    The Richtmyer–Meshkov instability in magnetohydrodynamics

    Get PDF
    In ideal magnetohydrodynamics (MHD), the Richtmyer–Meshkov instability can be suppressed by the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for a finite magnetic field. A model for this flow has been developed by considering the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This was accomplished by analytically solving the linearized initial value problem in the framework of ideal incompressible MHD. To assess the performance of the model, its predictions are compared to results obtained from numerical simulation of impulse driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases. It is shown that the analytical linear model collapses the data from the simulations well. The predicted interface behavior well approximates that seen in compressible linearized simulations when the shock strength, magnetic field strength, and perturbation amplitude are small. For such cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable. The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both the flow and the performance of the model are investigated. This results in a detailed exposition of the features and behavior of the MHD Richtmyer–Meshkov flow. For strong shocks, large initial perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the model is quantified and the flow physics underlying any discrepancies is examine
    • …
    corecore